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I. THE BCS GROUND STATE

A. Energetics of the Superconducting Ground State

Now that we have explicit expressions for the u’s and v’s, we can evaluate the ground state expectation
value of the Landau potential,
〈ΨBCS |H − µNop |ΨBCS〉 = 2

∑
l ξkv

2
k +

∑
k,l Vk,lukvkulvl.

Also recall the definition of the energy gap, now in terms of the u’s and v’s: ∆k = −
∑
l Vk,lulvl.

Putting in the expressions for the u’s and v’s yields,

〈ΨBCS |H − µNop |ΨBCS〉S =
∑
k

(
ξk − ξ2k

Ek

)
−∆2/V , for the superconducting state, and

〈ΨBCS |H − µNop |ΨBCS〉N =
∑
k<kF

2ξk for the normal state at T = 0.

Taking the difference in expectation values and converting from sums to integrals on energy yields,

〈ΨBCS |H − µNop |ΨBCS〉S − 〈ΨBCS |H − µNop |ΨBCS〉N =
(

∆2

V −
1
2D(0)∆2

)
− ∆2

V . The term in (...) is

the increase in kinetic energy, while the second term is the change in potential energy. The superconduc-
tor pays a large energy cost to “smear out” the Cooper pair distribution (at T = 0!) and move Cooper
pairs from states inside the Fermi sea to un-occupied states outside. This allows the product ukvk to
become non-zero around the chemical potential (as shown in the slide in the Supplementary material)
and create a negative pairing interaction and a non-zero “energy gap” ∆.

The Condensation Energy of the superconducting state is thus:
US(T = 0)− UN (T = 0) = − 1

2D(EF )∆2(0).
Note that in the BCS weak coupling approximation this energy gain is much smaller than the kinetic
energy investment, on the order of 10 %.

We can represent the condensation energy in terms of a thermodynamic critical field Hc as: µ0

2 H
2
c (0) =

1
2N(EF )∆2(0). Here we are using N(EF ) to represent the density of states per unit energy and per unit
volume. This result for the critical field will be generalized to non-zero temperature later.

B. Superconductivity as a Coherent State of Cooper Pairs

The pairing interaction is always present. In particular it is present above Tc. Why does it not make
a contribution to the energy of a metal in the normal state?
1) At T = 0 we saw that the ground state of a “normal metal” is to fill all states inside the Fermi sea,
and leave all states outside empty, such that the product ukvk = 0 for all k. This leads to zero energy
gap and no contribution to the energy from Vk,l.

2) At T > 0 there is a smeared Fermi distribution, creating non-zero values for ukvk around the
Fermi energy. However, the complex nature of the u’s and v’s plays a role. Write the energy gap as
∆k = −

∑
l Vk,lul|vl|eiφl . In the superconducting state the wavefunction is a coherent state in which

each term in this sum has the same phase φl = φ, allowing the terms to add coherently and produce a
non-zero ∆. This phase φ is in fact the phase of the macroscopic quantum wavefunction that describes
the superconductor. In the normal state these phases are random, leading to an incoherent sum, ∆ = 0,
and no ∆2/V contributions to the energy.

II. FINITE TEMPERATURE BCS

We now explore the properties of BCS theory at finite temperature. This will lead to quasi-particle
excitations out of the ground state. This calculation also serves as an independent way to determine
the ground state properties of the BCS Hamiltonian, so you will soon see some “old friends” from the

https://www.physics.umd.edu/courses/Phys798C/AnlageSpring22/BCS%20occupation%20uk%20fermi%20plots.pdf
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previous calculation!

Start with the BCS pairing Hamiltonian:
H − µNop =

∑
k,σ ξkc

+
k,σck,σ +

∑
k,l Vk,lc

+
k,↑c

+
−k,↓c−l,↓cl,↑.

The kinetic energy term is nice - it is diagonal. The potential energy term is quartic and involves oper-
ations on 4 different states - it is not diagonal. We will now go through a 2-step process to diagonalize
this Hamiltonian, and in the process create operators that destroy Cooper pairs (more precisely they
prevent the occupation of a particular Cooper pair) and create quasi-particle excitations. These are the
most elementary excitations out of the BCS ground state, and will play a major role in the perturbation
theory of the BCS Hamiltonian.

In the first step, break the quartic term into a product of two new operators. Define bk = 〈c−k,↓ck,↑〉,
where the expectation value is taken with the superconducting wavefunction that will ultimately result
from this calculation. Because the BCS wavefunction is a coherent superposition of systems with all
possible numbers of Cooper pairs, this expectation value for the Cooper pair destruction operator will
be non-zero in general. The expectation value in bk will be zero in the normal state because of the
incoherent nature of the wavefunction. (Recall from the harmonic oscillator case that the coherent state
wavefunction is the eigenfunction of the lowering operator.) This definition of bk is in the spirit of mean
field theory, in which the expectation value 〈c−k,↓ck,↑〉, and the energy gap, will be determined self
consistently.

Likewise define the adjoint operator as b+k =
〈
c+k,↑c

+
−k,↓

〉
.

Now write the bare destruction operators from the quartic term as a “mean” part (namely bk) and a
“fluctuating” part, namely everything else, as,
c−l,↓cl,↑ = bl + (c−l,↓cl,↑ − bl).
This separation into “mean” and “fluctuating” parts is again in the spirit of mean field theory.
Substitute this and the adjoint version in to the Hamiltonian and ignore second order “fluctuating”
terms to arrive at the “BCS Model Hamiltonian”:

HM − µNop =
∑
k,σ ξkc

+
k,σck,σ +

∑
k,l Vk,l

[
c+k,↑c

+
−k,↓bl + b+k c−l,↓cl,↑ − b

+
k bl

]
, where the bk will be deter-

mined self-consistently once we find the wavefunction.
Now define a new quantity (remember that this is an independent calculation) that will soon be inter-
preted as an “energy gap”:
∆k ≡ −

∑
l Vk,lbl.

With this definition, the model Hamiltonian can be written as ,

HM − µNop =
∑
k,σ ξkc

+
k,σck,σ −

∑
k

(
c+k,↑c

+
−k,↓∆k + ∆∗kc−k,↓ck,↑ − b

+
k ∆k

)
.

Now the Hamiltonian is bi-linear in the c’s, so we can take the next step to diagonalize the Hamiltonian.

In the second step we shall carry out the Bogoliubov-Valatin transformation to a new set of
operators that will create quasi-particle excitations. This transformation will diagonalize the model
Hamiltonian.
ck,↑ = u∗kγk0 + vkγ

+
k1

c+−k,↓ = −v∗kγk0 + ukγ
+
k1

where the u’s and v’s are just parameters of this transformation (for the moment) with the constraint

|uk|2 + |vk|2 = 1 to make the transformation unitary.

The inverse transformation is;
γ+
k0 = u∗kc

+
k,↑ − v∗kc−k,↓ and,

γ+
k1 = u∗kc

+
−k,↓ + v∗kck,↑.

One can see that the γk0 = ukck,↑ − vkc+−k,↓ operator decreases momentum by k and spin by ~/2 with

probability |uk|2 + |vk|2 = 1, using what we anticipate will be the interpretation of |uk|2 and |vk|2.
Likewise, the operator γ+

k1 increases momentum by k and spin by ~/2 with probability 1. (Note that
these operators involve creating particles and holes in different linear combinations.) As such, these
operators create Fermionic excitations which will come to be known as Bogoliubons or Quasi-Particles.
In fact, one can show,
γk0 |ΨBCS〉 = 0, and γk1 |ΨBCS〉 = 0, showing that the BCS ground state wavefunction is the vacuum
state for quasi-particles.
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A. Meanwhile, Back at the Hamiltonian

With the substitution of the transformed operators, the model Hamiltonian becomes,
HM−µNop =

∑
k (nice terms involving diagonal operators) + (undesired cross terms)

[
2ξkukvk + ∆∗kv

2
k −∆ku

2
k

]
.

We can eliminate all of the ugly terms in the transformed Hamiltonian by making a second constraint
on the u’s and v’s, namely to make the bracket term [...] in the model Hamiltonian equal to zero. That
leads to a quadratic equation for the quantity ∆∗kvk/uk whose solution yields ∆∗kvk/uk = Ek− ξk, which

is real. Here again we have Ek =
√

∆2
k + ξ2

k. If we take the convention that uk is real (as in the previous
calculation), then it must be that vk and ∆ have the same phase. This phase factor is the same for all
k and endows the energy gap with the macroscopic quantum phase factor in the superconducting state.
With the two constraints on the u’s and v’s, we can now solve for them in terms of known quantities,
and the result is

v2
k = 1

2

[
1− εk−µ√

∆2+(εk−µ)2

]
, and

u2
k = 1− v2

k = 1
2

[
1 + εk−µ√

∆2+(εk−µ)2

]
,

exactly as before in the variational calculation!

The resulting diagonalized Hamiltonian is,
HM − µNop =

∑
k (ξk − Ek + ∆kb

∗
k) +

∑
k Ek

(
γ+
k0γk0 + γ+

k1γk1

)
.

The first sum reproduces the ground state BCS energy. The second sum represents excitations out of
the ground state. It counts excitations of energy Ek through the γ+γ number operators.
These excitations are gapped by ∆, and as such are very rarely created at low temperatures when
kBT << ∆. Note that there is a gap in the energy spectrum of these excitations, but no gap in the
momentum. The excitations are called Bogoliubons or quasi-particles.

https://www.physics.umd.edu/courses/Phys798C/AnlageSpring22/Quasiparticle%20Excitation%20Spectrum.pdf
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